Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Nat Biomed Eng ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438799

RESUMO

Extracellular pH impacts many molecular, cellular and physiological processes, and hence is tightly regulated. Yet, in tumours, dysregulated cancer cell metabolism and poor vascular perfusion cause the tumour microenvironment to become acidic. Here by leveraging fluorescent pH nanoprobes with a transistor-like activation profile at a pH of 5.3, we show that, in cancer cells, hydronium ions are excreted into a small extracellular region. Such severely polarized acidity (pH <5.3) is primarily caused by the directional co-export of protons and lactate, as we show for a diverse panel of cancer cell types via the genetic knockout or inhibition of monocarboxylate transporters, and also via nanoprobe activation in multiple tumour models in mice. We also observed that such spot acidification in ex vivo stained snap-frozen human squamous cell carcinoma tissue correlated with the expression of monocarboxylate transporters and with the exclusion of cytotoxic T cells. Severely spatially polarized tumour acidity could be leveraged for cancer diagnosis and therapy.

2.
J Org Chem ; 89(7): 5029-5037, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38531374

RESUMO

Inubritantrimer A (1), a trace trimerized sesquiterpenoid [4 + 2] adduct featuring an unusual exo-exo type spiro-polycyclic scaffold, together with three new endo-exo [4 + 2] adducts, inubritantrimers B-D (2-4), were discovered from the flowers of Inula britannica. Their structures were elucidated using 1D/2D NMR, X-ray diffraction, and ECD approaches. 1 is characterized as a novel exo-exo trimer, synthesized biogenetically from three sesquiterpenoid monomers, featuring a unique linkage of C-11/C-1', C-13/C-3' and C-13'/C-3″, C-11'/C-1″ through a two-step exo [4 + 2] cycloaddition process. Compounds 1-4 exhibited modest cytotoxicity against breast cancer cells with IC50 values in the range of 5.84-12.01 µM.


Assuntos
Inula , Sesquiterpenos , Inula/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Sesquiterpenos/farmacologia , Sesquiterpenos/química
3.
Sci Immunol ; 9(92): eadj3945, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363830

RESUMO

Stimulator of interferon genes (STING) is an immune adaptor protein that senses cyclic GMP-AMP in response to self or microbial cytosolic DNA as a danger signal. STING is ubiquitously expressed in diverse cell populations, including cancer cells, with distinct cellular functions, such as activation of type I interferons, autophagy induction, or triggering apoptosis. It is not well understood whether and which subsets of immune cells, stromal cells, or cancer cells are particularly important for STING-mediated antitumor immunity. Here, using a polymeric STING-activating nanoparticle (PolySTING) with a shock-and-lock dual activation mechanism, we show that conventional type 1 dendritic cells (cDC1s) are essential for STING-mediated rejection of multiple established and metastatic murine tumors. STING status in the host but not in the cancer cells (Tmem173-/-) is important for antitumor efficacy. Specific depletion of cDC1 (Batf3-/-) or STING deficiency in cDC1 (XCR1creSTINGfl/fl) abolished PolySTING efficacy, whereas depletion of other myeloid cells had little effect. Adoptive transfer of wild-type cDC1 in Batf3-/- mice restored antitumor efficacy, whereas transfer of cDC1 with STING or IRF3 deficiency failed to rescue. PolySTING induced a specific chemokine signature in wild-type but not Batf3-/- mice. Multiplexed immunohistochemistry analysis of STING-activating cDC1s in resected tumors correlates with patient survival. Furthermore, STING-cDC1 signature was increased after neoadjuvant pembrolizumab therapy in patients with non-small cell lung cancer. Therefore, we have defined that a subset of myeloid cells is essential for STING-mediated antitumor immunity with associated biomarkers for prognosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interferon Tipo I , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Células Dendríticas , DNA/metabolismo , Interferon Tipo I/metabolismo , Nanopartículas/uso terapêutico , Imunoterapia/métodos
4.
Commun Chem ; 7(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167859

RESUMO

The search for lead compounds with anti-neuroinflammatory activity from structurally 'optimized' natural products is a crucial and promising strategy in the quest to discover safe and efficacious agents for treating neurodegenerative diseases. A phytochemical investigation on the aerial portions of Hypericum elatoides led to the isolation of five nitrogenous polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperelanitriles A-D (1-4) and hyperelamine A (5). Their structures were determined by spectroscopic analysis, ECD and NMR calculations, and X-ray crystallography. To the best of our knowledge, compounds 1-4 represent the first examples of acylphloroglucinols featuring an α-aminonitrile moiety, while 5 is a rare enamine-containing PPAP. Further, the synthesis of these naturally occurring PPAP-based nitriles or amines was accomplished. Compound 5 exhibited inhibitory activity against LPS-activated NO production in BV-2 cells, potentially through the suppression of TLR-4/NF-κB signaling. Here we show the isolation, structural elucidation, synthesis, and bioactive evaluation of compounds 1-5.

5.
Nat Prod Bioprospect ; 14(1): 13, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296905

RESUMO

Glycosylation is a prevalent post-modification found in natural products and has a significant impact on the structural diversity and activity variation of natural products. Glucosylation is the most common type of glycosylation, whereas xylosylation is relatively rare. Despite their unique chemical structures and beneficial activities, xylosylated natural products from microorganisms have received little attention. This review provides, for the first time, a comprehensive summary of 126 microbial-derived xylosylated natural products, including xylosyl-cyathane diterpenes, xylosylated triterpenes, xylosyl aromatic compounds, and others. Among these compounds, xylosyl-cyathane diterpenes represent the highest number of derivatives, followed by xylosylated triterpenes. Xylosyl compounds from bacterial sources have less defined structural profiles compared to those from fungi. The characterization of xylosyltransferase EriJ from Basidiomycota extended the structural diversity of xylosyl cyathane diterpenes. This work provides a valuable reference for the research and use of xylosyltransferase for drug discovery and synthetic chemistry. Further work is needed to explore the potential applications of microbial derived xylosyl compounds and to develop novel xylosyl transferases. With the deepening of genomic sequencing of medicinal fungi, more biosynthesis of bioactive xylosyl compounds is expected to be elucidated in the future.

6.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260493

RESUMO

Stimulator of interferon genes (STING) is an immune adaptor protein that senses cyclic GMP-AMP (cGAMP) in response to self or microbial cytosolic DNA as a danger signal. STING is ubiquitously expressed in diverse cell populations including cancer cells with distinct cellular functions such as activation of type I interferons, autophagy induction, or triggering apoptosis. It is not well understood whether and which subsets of immune cells, stromal cells, or cancer cells are particularly important for STING-mediated antitumor immunity. Here using a polymeric STING-activating nanoparticle (PolySTING) with a "shock-and-lock" dual activation mechanism, we show type 1 conventional dendritic cell (cDC1) is essential for STING-mediated rejection of multiple established and metastatic murine tumors. STING status in the host but not in the cancer cells ( Tmem173 -/- ) is important for antitumor efficacy. Specific depletion of cDC1 ( Batf3 -/- ) or STING deficiency in cDC1 ( XCR1 cre STING fl/fl ) abolished PolySTING efficacy, whereas depletion of other myeloid cells had little effect. Adoptive transfer of wildtype cDC1 in Batf3 -/- mice restored antitumor efficacy while transfer of cDC1 with STING or IRF3 deficiency failed to rescue. PolySTING induced a specific chemokine signature in wildtype but not Batf3 -/- mice. Multiplexed immunohistochemistry analysis of STING-activating cDC1s in resected tumors correlates with patient survival while also showing increased expressions after neoadjuvant pembrolizumab therapy in non-small cell lung cancer patients. Therefore, we have defined that a subset of myeloid cells is essential for STING-mediated antitumor immunity with associated biomarkers for prognosis. One Sentence Summary: A "shock-and-lock" nanoparticle agonist induces direct STING signaling in type 1 conventional dendritic cells to drive antitumor immunity with defined biomarkers.

7.
Phytochemistry ; 218: 113951, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096962

RESUMO

Inubritanolides C and D (1 and 2), two exo sesquiterpenoid [4 + 2] adducts with unprecedented interconverting conformations of twist-chair and chair, together with two previously undescribed endo [4 + 2] dimers (3 and 4) were discovered from Inula britannica flowers. Dimers 1 and 2 have an undescribed carbon skeleton comprising of eudesmanolide and guaianolide units with the linkage mode of C-11/C-1' and C-13/C-3' via a Diels-Alder cycloaddition reaction. Their structures were elucidated using 1D/2D NMR, X-ray diffraction, ECD, and variable-temperature NMR experiments. Dimer 2 displayed a strong inhibitory effect on breast cancer cells by promoting lipid ROS production, showing its potential as ferroptosis inducer.


Assuntos
Asteraceae , Ferroptose , Inula , Sesquiterpenos , Inula/química , Conformação Molecular , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Estrutura Molecular
8.
ACS Nano ; 18(1): 662-679, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134332

RESUMO

Developing an environmentally friendly and safe nanodelivery system is crucial to improve the efficacy of pesticides and minimize environmental and health risks. However, preparing a completely water-based nanopesticide without using harmful solvents is a technical challenge. In this study, a water-based nanodelivery pesticide system was constructed to improve the efficacy and safety of Emamectin Benzoate (EB). A specific surfactant, 29-(4-(5-hydroxynonan-5-yl)phenoxy)-3,6,9,12,15,18,21,24,27-nonaoxanonacosan-1-ol (SurEB) was designed and synthesized to form a water-based nanodelivery system (EBWNS) with EB. Molecular dynamics simulations revealed the self-assembly and interaction forces between SurEB and EB in water, providing insights into the formation mechanism of EBWNS nanoparticles. The nanodelivery system showed the prolonged effectivity of EB with reduced degradation and demonstrated a good control efficacy for multiple target pests, such as red spider mite, beet armyworm larvae (Lepidoptera: Noctuidae), and rice stem borers (Chilo suppressalis). Toxicology tests on various objects demonstrated that the EBWNS has low toxicity for seeds, HaCaT cells, zebrafish, earthworm, and E. coli. This study provides a distinctive perspective for developing environmentally friendly nanopesticide formulations, which clarified a water-based treatment method for specific lipid-soluble pesticides. The water-based nanodelivery pesticide system has the potential to improve the efficacy and safety of pesticides in the process of field applications.


Assuntos
Praguicidas , Animais , Água , Escherichia coli , Peixe-Zebra
9.
Nat Prod Bioprospect ; 13(1): 50, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37946001

RESUMO

Mushrooms have been utilized by humans for thousands of years due to their medicinal and nutritional properties. They are a crucial natural source of bioactive secondary metabolites, and recent advancements have led to the isolation of several alkynyl-containing compounds with potential medicinal uses. Despite their relatively low abundance, naturally occurring alkynyl compounds have attracted considerable attention due to their high reactivity. Bioactivity studies have shown that alkynyl compounds exhibit significant biological and pharmacological activities, including antitumor, antibacterial, antifungal, insecticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. This review systematically compiles 213 alkynyl-containing bioactive compounds isolated from mushrooms since 1947 and summarizes their diverse biological activities, focusing mainly on cytotoxicity and anticancer effects. This review serves as a detailed and comprehensive reference for the chemical structures and bioactivity of alkynyl-containing secondary metabolites from mushrooms. Moreover, it provides theoretical support for the development of chemical constituents containing alkynyl compounds in mushrooms based on academic research and theory.

10.
Food Funct ; 14(23): 10520-10534, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37946597

RESUMO

The oil of Torreya grandis (TGO), a common nut in China, is considered to be a bioactive edible oil and has a great value in functional food development. In this study, the neuroprotective effects of TGO were investigated on a scopolamine (SCOP)-induced C57BL/6J mouse model. The mice were pretreated with TGO for 30 days (1000 mg per kg per day and 3000 mg per kg per day, i.g.). Behavioral tests showed that the supplementation of TGO could prevent the cognitive deficits induced by SCOP. TGO rebalanced the disorder of the cholinergic system by upgrading the level of acetylcholine. TGO also alleviated the over-activation of microglia and inhibited neuroinflammation and oxidative stress. Additionally, TGO could regulate the composition of gut microbiota, increase the production of short-chain fatty acids, and decrease the content of lipopolysaccharides in the serum. In conclusion, TGO has the potential to prevent loss of memory and impairment of cognition, which may be related to its regulation of the gut microbiota-metabolite-brain axis.


Assuntos
Disfunção Cognitiva , Taxaceae , Camundongos , Animais , Escopolamina/efeitos adversos , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Estresse Oxidativo
11.
BMC Pulm Med ; 23(1): 465, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993859

RESUMO

BACKGROUND: Polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome is a rare multisystemic clonal plasma cell disorder. Pulmonary involvement is frequently found in patients with POEMS syndrome, manifesting various clinical features. Therefore, to improve diagnostic accuracy and provide treatment strategies, a comprehensive analysis of pulmonary manifestations of POEMS syndrome is needed. METHODS: This retrospective study included patients with POEMS syndrome at Peking Union Medical College Hospital, a major referral medical center in China, between June 1, 2013, and June 1, 2023. Demographic data, laboratory findings, pulmonary function test results, echocardiograms, and chest imaging data were extracted. Continuous variables were compared using the t-test or Mann-Whitney method. Pearson's chi-square test or Fisher's exact test was conducted to compare categorical data. RESULTS: Overall, 282 individuals diagnosed with POEMS syndrome were included in this study, of which 56% were male with an average age of 48.7 years. Respiratory symptoms were found in 40.1% of the patients, with dyspnea as the most common symptom (34.4%). Chest computed tomography and echocardiography findings showed that 56.4% of patients exhibited pleural effusion, 62.8% displayed mediastinal or hilar lymphadenopathy, 46.5% presented pleural thickening, 27.3% demonstrated bone lesions of the ribs or thoracic vertebra, 7.8% showed lung interstitial abnormalities, and 35.5% had pulmonary hypertension. Decreased diffuse capacity and restrictive ventilatory patterns were identified in 85.2% (115 cases) and 47.4% (64 cases) of patients, respectively. Patients with respiratory symptoms exhibited higher declined lung function measures than those having no respiratory symptoms. High-risk patients with poor prognosis showed more pulmonary function abnormalities. CONCLUSION: Abnormalities in pulmonary manifestations constitute the significant features of POEMS syndrome. Several patients with POEMS syndrome presented with respiratory symptoms at the initial evaluation. These findings underscore the importance of early identification and accurate diagnosis of POEMS syndrome by clinicians, particularly in cases involving lung and multisystem.


Assuntos
Hipertensão Pulmonar , Pneumopatias , Síndrome POEMS , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Síndrome POEMS/complicações , Síndrome POEMS/diagnóstico , Estudos Retrospectivos , Pulmão/diagnóstico por imagem
12.
Org Lett ; 25(48): 8564-8569, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38019531

RESUMO

Photoenzymatic decarboxylation of bulky secondary and tertiary carboxylic acids catalyzed by engineered Chlorella variabilis fatty acid photodecarboxylase (CvFAP) is reported. Rational design and directed evolution of wild-type CvFAP are used to improve the reactivity and expand potential applications. Moreover, engineered CvFAP can catalyze light-driven kinetic resolution of α-substituted carboxylic acid. Our work sheds light on the production of chiral building blocks and bioactive molecules from bulky carboxylic acids via the photoenzymatic way.


Assuntos
Ácidos Carboxílicos , Chlorella , Ácidos Graxos , Catálise , Cinética
13.
Eur J Med Chem ; 260: 115776, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660484

RESUMO

A series of tetrahydro-ß-carboline (THßC)-based hydroxamic acids were rationally designed and synthesized as novel selective HDAC6 inhibitors (sHDAC6is) by the application of scaffold hopping strategy. Several THßC analogues were highly potent (IC50 < 5 nM) and selective against HDAC6 enzyme and exhibited good antiproliferative activity against human multiple myeloma (MM) cell. Molecular docking interpreted the structure activity relationship (SAR). Target engagement of HDAC6 was confirmed in RPMI-8226 cells using the WB assay. In vitro, (1S, 3R)-1-(4-chlorophenyl)-N-(4-(hydroxycarbamoyl)benzyl)-2,3,4,9-tetrahydro-1H-pyrido[3, 4-b]indole-3-carboxamide (14g) showed potent broad antiproliferative activity against various tumors including leukemia, colon cancer, melanoma, and breast cancer cell lines, better than ACY-1215. Moreover, 14g also showed good pharmacokinetics properties in mice via oral administration.


Assuntos
Carbolinas , Humanos , Animais , Camundongos , Desacetilase 6 de Histona , Simulação de Acoplamento Molecular , Administração Oral , Carbolinas/farmacologia
14.
Int J Biol Macromol ; 253(Pt 2): 126738, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37690648

RESUMO

Taxa of Buchnera aphidicola (hereafter "Buchnera") are mutualistic intracellular symbionts of aphids, known for their remarkable biological traits such as genome reduction, strand compositional asymmetry, and symbiont-host coevolution. With the growing availability of genomic data, we performed a comprehensive analysis of 103 genomes of Buchnera strains from 12 host subfamilies, focusing on the genomic characterizations, codon usage patterns, and phylogenetic implications. Our findings revealed consistent features among all genomes, including small genome sizes, low GC contents, and gene losses. We also identified strong strand compositional asymmetries in all strains at the genome level. Further investigation suggested that mutation pressure may have played a crucial role in shaping codon usage of Buchnera. Moreover, the genomic asymmetries were reflected in asymmetric codon usage preferences within chromosomal genes. Notably, the levels of these asymmetries were varied among strains and were significantly influenced by the degrees of genome shrinkages. Lastly, our phylogenetic analyses presented an alternative topology of Aphididae, based on the Buchnera symbionts, providing robust confirmation of the paraphylies of Eriosomatinae, and Macrosiphini. Our objectives are to further understand the strand compositional asymmetry and codon usage bias of Buchnera taxa, and provide new perspectives for phylogenetic studies of Aphididae.


Assuntos
Buchnera , Gammaproteobacteria , Filogenia , Buchnera/genética , Uso do Códon , Gammaproteobacteria/genética , Evolução Molecular , Simbiose/genética
15.
Cancer Cell ; 41(10): 1731-1748.e8, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37774698

RESUMO

The role of tumor mutational burden (TMB) in shaping tumor immunity is a key question that has not been addressable using genetically engineered mouse models (GEMMs) of lung cancer. To induce TMB in lung GEMMs, we expressed an ultra-mutator variant of DNA polymerase-E (POLE)P286R in lung epithelial cells. Introduction of PoleP286R allele into KrasG12D and KrasG12D; p53L/L (KP) models significantly increase their TMB. Immunogenicity and sensitivity to immune checkpoint blockade (ICB) induced by Pole is partially dependent on p53. Corroborating these observations, survival of NSCLC patients whose tumors have TP53truncating mutations is shorter than those with TP53WT with immunotherapy. Immune resistance is in part through reduced antigen presentation and in part due to mutational heterogeneity. Total STING protein levels are elevated in Pole mutated KP tumors creating a vulnerability. A stable polyvalent STING agonist or p53 induction increases sensitivity to immunotherapy offering therapeutic options in these polyclonal tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Mutação
16.
Adv Mater ; 35(51): e2305255, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37541432

RESUMO

Stimuli-responsive nanomaterials have the potential to improve the performance and overcome existing barriers of conventional nanotherapeutics. Molecular cooperativity design in stimuli-responsive nanomedicine can amplify physiological signals, enabling a cooperative response for improved diagnostic and therapeutic precision. Previously, this work reported an ultra-pH-sensitive polymer, PEG-b-PC7A, that possesses innate immune activating properties by binding to the stimulator of interferon genes (STING) through polyvalent phase condensation. This interaction enhances STING activation and synergizes with the endogenous STING ligand for robust cancer immunotherapy. Despite its successes in innate immune activation, the fundamental physicochemical and pH-responsive properties of PC7A require further investigation. Here, this study elucidates the protonation cooperativity driven by the phase transition of PC7A copolymer. The highly cooperative system displays an "all-or-nothing" proton distribution between highly charged unimer (all) and neutral micelle (nothing) states without gradually protonated intermediates. The binary protonation behavior is further illustrated in pH-precision-controlled release of a representative anticancer drug, ß-lapachone, by PC7A micelles over a noncooperative PE5A polymer. Furthermore, the bimodal distribution of protons is represented by a high Hill coefficient (nH  > 9), featuring strong positive cooperativity. This study highlights the nanoscale pH cooperativity of an immune activating polymer, providing insights into the physicochemical characterization and design parameters for future nanotherapeutics development.


Assuntos
Antineoplásicos , Proteínas de Membrana , Nanoestruturas , Concentração de Íons de Hidrogênio , Micelas , Transição de Fase , Polímeros/química , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo
17.
J Nat Prod ; 86(8): 1910-1918, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37530709

RESUMO

Four new δ- and γ-lactone derivatives, hyperelatolides A-D (1-4, respectively), were discovered from the aerial portions of Hypericum elatoides R. Keller. Their structures were elucidated by analysis of NMR spectra, HRESIMS, quantum chemical calculations of NMR and ECD spectra, and X-ray crystallographic data. Hyperelatolides A (1) and B (2) represent the first examples of δ-lactone derivatives characterized by a (Z)-(5,5-dimethyl-2-(2-oxopropyl)cyclohexylidene)methyl moiety and a benzoyloxy group attached to the ß- and γ-positions of the δ-lactone core, respectively, while hyperelatolides C (3) and D (4) are unprecedented γ-lactone derivatives featuring substituents similar to those of 1 and 2. All compounds were tested for their inhibitory effects on NO production in LPS-activated BV-2 cells. Lactones 1 and 2 exhibited considerable antineuroinflammatory activity, with IC50 values of 5.74 ± 0.27 and 7.35 ± 0.26 µM, respectively. Moreover, the mechanistic study revealed that lactone 1 significantly suppressed nuclear factor kappa B signaling and downregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-induced cells, which may contribute to its antineuroinflammatory activity.


Assuntos
Hypericum , Hypericum/química , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética , Lactonas/farmacologia , Lactonas/química , Transdução de Sinais , Estrutura Molecular , Óxido Nítrico
18.
J Natl Cancer Inst ; 115(11): 1262-1270, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37572314

RESUMO

The Immuno-Oncology Translational Network (IOTN) was established in 2018 as part of the Cancer Moonshot. In 2022, President Joe Biden set new goals to reduce the cancer death rate by half within 25 years and improve the lives of people with cancer and cancer survivors. The IOTN is focused on accelerating translation of cancer immunology research, from bench to bedside, and improving immunotherapy outcomes across a wide array of cancers in the adult population. The unique structure and team science approach of the IOTN is designed to accelerate discovery and evaluation of novel immune-based therapeutic and prevention strategies. In this article, we describe IOTN progress to date, including new initiatives and the development of a robust set of resources to advance cancer immunology research. We summarize new insights by IOTN researchers, some of which are ripe for translation for several types of cancers. Looking to the future, we identify barriers to the translation of immuno-oncology concepts into clinical trials and key areas for action and improvements that are suitable for high-yield investments. Based on these experiences, we recommend novel National Institutes of Health funding mechanisms and development of new resources to address these barriers.


Assuntos
Neoplasias , Adulto , Humanos , Neoplasias/terapia , Oncologia , Imunoterapia
19.
Biochem Genet ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532836

RESUMO

Actinomycetes are remarkable natural sources of active natural molecules and enzymes of considerable industrial value. Streptomyces mobaraensis is the first microorganism found to produce transglutaminase with broad industrial applications. Although transglutaminase in S. mobaraensis has been well studied over the past three decades, the genome of S. mobaraensis and its secondary metabolic potential were poorly reported. Here, we presented the complete genome of S. mobaraensis DSM40587 obtained from the German Collection of Microorganisms and Cell Cultures GmbH. It contains a linear chromosome of 7,633,041 bp and a circular plasmid of 23,857 bp. The chromosome with an average GC content of 73.49% was predicted to harbour 6683 protein-coding genes, seven rRNA and 69 tRNA genes. Comparative genomic analysis reveals its meaningful genomic characterisation. A comprehensive bioinformatics investigation identifies 35 putative BGCs (biosynthesis gene clusters) involved in synthesising various secondary metabolites. Of these, 13 clusters showed high similarity (> 55%) to known BGCs coding for polyketides, nonribosomal peptides, hopene, RiPP (Ribosomally synthesized and post-translationally modified peptides), and others. Furthermore, these BGCs with over 65% similarity to the known BGCs were analysed in detail. The complete genome of S. mobaraensis DSM40587 reveals its capacity to yield diverse bioactive natural products and provides additional insights into discovering novel secondary metabolites.

20.
Phytochemistry ; 215: 113833, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625681

RESUMO

Chemical investigation of the EtOAc extract of the leaves of Pittosporum lenticellatum led to the isolation of twenty-five previously undescribed eudesmane sesquiterpenoid glycosides, pitlencosides A-Y (1-25); their structures were elucidated by extensive spectroscopic analysis, including 1D and 2D NMR, HR-ESI-MS, ECD spectra, and X-ray crystallographic analysis. Among them, compounds 4, 5, 7, 8, 15 and 16 exhibited significant inhibitory effects on the production of nitric oxide in lipopolysaccharide-induced BV-2 microglial cells by suppressing the expression of inducible nitric oxide synthase and cyclooxygenase-2, with IC50 values ranging from 7.95 to 25.88 µM, which showed stereo-chemical and substituent dependents. Western blot analysis and molecular docking simulation confirmed the anti-inflammatory activity of compounds 4, 5, 7, 8, 15 and 16.


Assuntos
Sesquiterpenos de Eudesmano , Sesquiterpenos , Estrutura Molecular , Simulação de Acoplamento Molecular , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Espectroscopia de Ressonância Magnética , Sesquiterpenos/química , Óxido Nítrico , Glicosídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...